Appendix A

Lake Response Model Results and Model Fit Graphs

GEM LAKE A	VG YEAR		Calibrati	ion Years '0	0-'05, '07-'	09
	Water Budge	ts		Phosp	horus Loading	3
Inflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	306.34	3.2	81.1	281.6	1.0	62.1
2 3 4 5					1.0 1.0 1.0 1.0	·
Summation	306.34	3.2	81.1	281.6		62.1
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed 2 3 4 5	306.34	13	5%	7.8	0.0	5.1
Summation	306.34	13	5%		0.0	5.1
Inflow from Upstre	am Lakes					
Name 1 2 3			Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Calibration Factor [] 1.0 1.0 1.0	Load [lb/yr]
Summation			0	-		0
Atmosphere						
Lake Area [acre] 21.6	Precipitation [in/yr] 32.0	Evaporation [in/yr] 32.0	Net Inflow [ac-ft/yr] 0.00	Aerial Loading Rate [lb/ac-yr] 0.24	Calibration Factor [] 1.0	Load [lb/yr] 5.2
	Avera	Dry-year total P age-year total P Vet-year total P (Barr Engin	deposition =	0.230 0.240 0.268		
Groundwater			·			
Lake Area [acre] 21.6	Groundwater Flux [m/yr]	Net Inflow cfs 0.0	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor [] 1.0	Load [lb/yr]
		0.0	U	U	1.0	U
Lake Area [acre] 21.6	Anoxic Factor [days]	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor [] 1.0	Load [lb/yr]
	Net Discha	rge [ac-ft/yr] =	81		Load [lb/yr] =	72.4
NOTES	5130114	. 30 [a0 iayi] -	V.	1461	[,]	. E. T

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Response Modeling for Gem Lake Avg Year	,	
Modeled Parameter Equation Parameters TOTAL IN-LAKE PHOSPHORUS CONCENTRATION	Value	[Units]
as f(W,Q,V) from Canfield & B	Bachmann (198	31)
$ _{P_{-}} P_{i}/$ $C_{P} =$	1.00	[]
$P = P_i / C_{P} \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T$ $C_P = C_{CB} = C_{CB} = b = 0$	0.162 0.458	[]
b =	0.458	[]
w (total P load = inflow + atm.) =	72	[lb/yr]
Q (lake outflow) =	81	[ac-ft/yr]
V (modeled lake volume) =	183	[ac-ft]
V (modeled lake volume) = T = V/Q =	2.26	[yr]
$P_i = W/Q =$	328	[ug/l]
Model Predicted In-Lake [TP]		[ug/l]
Observed In-Lake [TP]	59.5	[ug/l]
Note: The observed In-Lake TP concentration reported here excludes two sample data	a points from 2	007.
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
P _{sed} (phosphorus sedimentation) =	56.6	[lb/yr]
PHOSPHORUS OUTFLOW LOAD	4	F
W-P _{sed} =	15.8	[lb/yr]

Lo	Load Reduction Table for Gem							
	.OAD	MODE	LED IN-LAKE	WATER	TROPHI	IC STATE		
		QUA	LITY PARAM	ETERS	INDICES	(Carlson,		
					1980) FOR		
					MOD	ELED		
REDUC-	NET LOAD	[TP]	P SEDIMEN.	TP OUT-	TSI	TSI		
TION			TATION	FLOW	[TP]	Avg.		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	[]		
0%	72	72	57	16	65.7	60.8		
5%	69	69	53	15	65.3	60.5		
10%	65	67	50	15	64.8	60.3		
15%	62	65	47	14	64.2	60.0		
20%	58	62	44	14	63.7	59.7		
25%	54	59	41	13	63.1	59.4		
30%	51	57	38	13	62.4	59.0		
35%	47	54	35	12	61.7	58.6		
40%	43	51	32	11	60.9	58.2		
45%	40	48	29	11	60.1	57.7		
50%	36	45	26	10	59.2	57.2		
55%	33	42	23	9	58.2	56.6		
60%	29	39	20	9	57.0	55.9		
65%	25	36	17	8	55.7	55.1		
70%	22	32	15	7	54.2	54.2		
75%	18	28	12	6	52.4	53.1		
80%	14	24	9	5	50.1	51.7		
85%	11	20	7	4	47.1	49.8		
90%	7	15	4	3	42.8	47.0		
95%	4	9	2	2	35.2	42.1		

GEM LA	KE TMDL					
	Water Budge	ts		Phosp	horus Loading	1
Inflow from Draina	ge Areas			•		
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	306.34	3.2	81.1	281.6	0.80	49.7
2 3 4 5					1.0 1.0 1.0 1.0	
Summation	306	3.2	81.1	281.6		49.7
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed	306.34	0	5%	7.8	0.0	0.0
2 3 4 5						
Summation	306.34	0	5%		0.0	0.0
Inflow from Upstre	am Lakes					
Name 1 2			Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Calibration Factor [] 1.0 1.0	Load [lb/yr]
3 Summation			0	-	1.0	0
			U			U
Atmosphere Lake Area [acre]	Precipitation [in/yr]	Evaporation [in/yr]	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr]	Calibration Factor []	Load [lb/yr]
21.6	32.0	32.0	0.00	0.24	1.0	5.2
	Avera	Ory-year total P age-year total P Vet-year total P (Barr Engin	deposition =	0.230 0.240 0.268		
Groundwater						
Lake Area [acre]	Groundwater Flux [m/yr]	Net Inflow cfs	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor []	Load [lb/yr]
21.6		0.0	0	0	1.0	0
Internal						
Lake Area [acre] 21.6	Anoxic Factor [days] 47.1	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor [] 1.0	Load [lb/yr]
21.0			0.4			
NOTES	Net Discha	rge [ac-ft/yr] =	81	Net	Load [lb/yr] =	54.9

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Response Model	ling for Ger	n Lake TMDL	
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCEN			
	as f(V	/,Q,V) from Canfield & Ba	achmann (1981)
		C _P =	1.00 []
		C _{CB} =	0.162 []
$P = \frac{P_i}{I}$		b =	0.458 []
$\left \begin{array}{c} \left 1 + C \times C \times \left(\frac{W_p}{V} \right)^v \times T \right \end{array} \right $	W (total F	P load = inflow + atm.) =	55 [lb/yr]
$P = \frac{P_i}{\left(1 + C_p \times C_{CB} \times \left(\frac{W_p}{V}\right)^b \times T\right)}$		Q (lake outflow) = _	81 [ac-ft/yr]
, , ,	V (modeled lake volume) =	183 [ac-ft]
		T = V/Q =	2.26 [yr]
		$P_i = W/Q =$	249 [ug/l]
Model Predicted In-Lake [TP]			59.9 [ug/l]
PHOSPHORUS SEDIMENTATION RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$			
-	P _{sed} (phosph	orus sedimentation) =	42 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			13 [lb/yr]

EAST GOOS	SE LAKE A	VG YEAR		Calibration	Years '07	-'10
	Water Budge	ts		Phosp	horus Loadin	a
Inflow from Draina						<u> </u>
mmow mom Brama	ge Areae				Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	577.55	5.5	265.9	297.0	1.0	214.8
2	377.33	3.3	200.0	237.0	1.0	211.0
3					1.0	
4					1.0	
5					1.0	
Summation	578	5.5	265.9	297.0		214.8
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed	577.55	0	5%	7.8	0.0	0.0
2			3,0	7.0	0.0	0.0
3						
4						
5						
Summation	577.55	0	5%		0.0	0.0
Inflow from Upstre	am Lakes					
•				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	
2				-	1.0	
3				-	1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
116.3	27.2	27.2	0.00	0.24	1.0	27.9
		Dry-year total P		0.230		
		age-year total P		0.240		
	V	Vet-year total P	eering 2007)	0.268		
Groundwater		(Dall Eligili	coming 2007)			
Groundwater	Groundwater			Dhoonharus	Calibration	
Lake Area	Groundwater Flux	Net Inflow	Net Inflow	Phosphorus Concentration	Factor	Load
[acre] 116.0	[m/yr]	cfs 0.006	[ac-ft/yr]	[ug/L]	[] 1.0	[lb/yr]
		0.006	4.4	69.0	1.0	0.8
Internal			1		0 1" "	
Laka Arra	A	Oala Assess		Dalassa Dat	Calibration	1
Lake Area	Anoxic Factor	Calc Anoxia		Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
116.0	71.4			24.00	1.0	1,777.2
	Net Discha	rge [ac-ft/yr] =	270.3	Net	Load [lb/yr] =	2020.7

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Response	Modelin	g for East Goose	Avg Ye	ar
Modeled Parameter TOTAL IN-LAKE PHOSPHORUS CONCENTR	quation ATION	Parameters	Valu	ue [Units]
	as f	W,Q,V) from Canfield & B	achmann (1	981)
		C _P =	1.0	00 []
P. /			0.16	62 []
$P = \frac{1}{\sqrt{1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T}}$		b =	0.45	58 []
	W (tota	P load = inflow + atm.) =	2,02	21 [lb/yr]
		` , _		70 [ac-ft/yr]
	V	(modeled lake volume) =	63	[ac-ft]
		T = V/Q =	2.3	35 [yr]
		$P_i = W/Q =$	274	49 [ug/l]
Model Predicted In-Lake [TP]			258	[ug/l]
Observed In-Lake [TP]			261.1	[ug/l]
PHOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$				
	P _{sed} (phosp	horus sedimentation) =	1,831	.4 [lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			189	.3 [lb/yr]

Lo	Load Reduction Table for East Goose							
L	DAD	MODE	MODELED IN-LAKE WATER TROPHIC					
		QUAI	LITY PARAMI	ETERS	STATE	INDICES		
					(Carls	on, 1980)		
					FOR N	ODELED		
REDUC-	NET LOAD	[TP]	P SEDIMEN-	TP OUT-	TSI	TSI		
TION			TATION	FLOW	[TP]	Avg.		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	[]		
0%	2,021	258	1831	189	84.2	75.1		
5%	1,920	250	1736	184	83.8	75.0		
10%	1,819	242	1641	178	83.3	74.8		
15%	1,718	234	1545	172	82.8	74.6		
20%	1,617	226	1450	166	82.3	74.4		
25%	1,516	217	1356	160	81.8	74.2		
30%	1,414	209	1261	153	81.2	73.9		
35%	1,313	200	1167	147	80.5	73.6		
40%	1,212	191	1072	140	79.9	73.3		
45%	1,111	181	978	133	79.1	73.0		
50%	1,010	171	885	126	78.3	72.7		
55%	909	160	791	118	77.4	72.3		
60%	808	149	698	110	76.3	71.8		
65%	707	138	606	101	75.2	71.3		
70%	606	125	514	92	73.8	70.6		
75%	505	112	423	82	72.2	69.8		
80%	404	98	332	72	70.2	68.8		
85%	303	82	243	60	67.6	67.5		
90%	202	63	156	46	63.9	65.5		
95%	101	40	72	29	57.3	61.7		

EAST GOOSE LAKE TMDL						
	Water Budge	ts		Phosp	horus Loading	9
Inflow from Draina	ge Areas			•		_
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	577.55	5.5	265.9	297.0	0.41	88.1
2 3 4 5					1.0 1.0 1.0 1.0	
Summation	577.55	5.5	265.9	297.0		88.1
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed	577.55	0	5%	7.8	0.0	0.0
2 3 4 5						
Summation	577.55	0	5%		0.0	0.0
Inflow from Upstre	am Lakes					
Name 1 2 3			Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Calibration Factor [] 1.0 1.0	Load [lb/yr]
Summation			0	<u>-</u>	1.0	0
			U	-		U
Atmosphere Lake Area [acre]	Precipitation [in/yr]	Evaporation [in/yr]	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr]	Calibration Factor []	Load [lb/yr]
116.3	27.2	27.2	0.00	0.24	1.0	27.9
	I Avera	Ory-year total P age-year total P Vet-year total P	deposition = deposition =	0.230 0.240 0.268		
Groundwater			•			
Lake Area [acre]	Groundwater Flux [m/yr]	Net Inflow cfs	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor []	Load [lb/yr]
116.0		0.006	4.4	69.0	1.0	8.0
Lake Area [acre] 116.0	Anoxic Factor [days] 71.4	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor []	Load [lb/yr] 71.1
110.0		rgo [oo ft/:=1 =	270.2			
NOTEC	net Discha	rge [ac-ft/yr] =	270.3	net	Load [lb/yr] =	187.9

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

TMDL Lake Respons	e Modeling	for East Goose	TMDL	
Modeled Parameter	Equation	Parameters	Value	[Units]
TOTAL IN-LAKE PHOSPHORUS CONCENT	RATION			
	as f(W	,Q,V) from Canfield & Ba	chmann (198	31)
		$C_P =$	1.00	[]
$P = \frac{P_i}{r}$		C _{CB} =	0.162	? []
$\left(\left(1 + G - G - \left(W_P \right)^b - T \right) \right)$		b =	0.458	3 []
$P = P_{i} \left(1 + C_{P} \times C_{CB} \times \left(\frac{W_{P}}{V} \right)^{b} \times T \right)$	W (total F	load = inflow + atm.) =	188	B [lb/yr]
/ ((,)		Q (lake outflow) =	270	[ac-ft/yr]
	V (r	nodeled lake volume) =	635	[ac-ft]
		T = V/Q =	2.35	
		$P_i = W/Q =$	256	[ug/l]
Model Predicted In-Lake [TP]			60.0	[ug/l]
PHOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$				
	P _{sed} (phosph	orus sedimentation) =	143.8	[lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			44.1	[lb/yr]

WEST GOOS	SE LAKE A	VG YEAR		Calibration	Years '07-	· '10
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Drainag	ge Areas					
					Loading	
		5 (5)	5	Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Nama	[aara]	[in/vr]	[oo ft/vr]	fug/L1	r 1	[lb/vr]
Name 1 Watershed	[acre] 238.78	[in/yr] 7.0	[ac-ft/yr] 139.8	[ug/L] 290.4	[] 1.0	[lb/yr] 110.4
2	236.76	7.0	139.0	290.4	1.0	110.4
3		•			1.0	
4					1.0	
5					1.0	
Summation	238.78	7	139.8	290.4		110.4
Failing Septic Syst						
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed	238.78	0	5%	7.8	0.0	0.0
2						
3						
4 5						
Summation	238.78	0	5%		0.0	0.0
Inflow from Upstre	am Lakes	-				
ппон пон ороно				Estimated P	Calibration	
		Runoff Depth	Discharge	Concentration	Factor	Load
Name	Area [ac]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 East Goose	577.55	5.5	270.3	257.2	1.0	189.1
2					1.0	
3 Cummatian			270	- 257.2	1.0	189.1
Summation			270	251.2		109.1
Atmosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
24.1	27.2	27.2	0.00	0.24	1.0	5.8
	[Ory-year total P	deposition =	0.230	-	
		ige-year total P		0.240		
	V	Vet-year total P		0.268		
		(Barr Engin	eering 2007)			
M-Foods Dairy ²						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux	Net Inflow	Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]	cfs	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
24.1		8.0	604.9	10.0	1.0	16.5
Internal, Sediments	5				0=19-==41	
Lake Area	Anoxic Factor	Calc Anoxia		Release Rate	Calibration Factor	Load
[acre]	[days]	Calc AHOXIA		[mg/m ² -day]	Factor []	[lb/yr]
24.1	63.2			2.00	1.0	27.2
Internal Other	03.2			2.00	1.0	£1.£
miternal Other					Calibration	
Source	Lake Area	Duration		Release Rate	Factor	Load
	[acre]	[days]		[mg/m ² -day]	[]	[lb/yr]
Sediment re-	[]	[, 5]		[[]		r =: 7:1
suspension (e.g.						
1 boating and wind)	24.1	60.0		31.00	1.0	399.9
2					1.0	0
	Net Discha	rge [ac-ft/yr] =	1015.0	Net	Load [lb/yr] =	748.8
NOTES	.101 0100110	. 50 [40 10]1] -	1010.0	1400		

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Non-contact cooling water sourced from groundwater. Contribution calculated based on discharge sampling and the maximum permitted flow from the facility. There is no other groundwater interaction with the lake.

Lake Response I	Modeling	for West Goose	Avg Yea	ar
Modeled Parameter Equ. TOTAL IN-LAKE PHOSPHORUS CONCENTRAT	ation TON	Parameters	Value	e [Units]
	as f(W	Q,V) from Canfield & Ba	achmann (19	81)
		C _P =	1.00	O []
D /		C _{CB} =	0.162	2 []
$P = P_i / \left(1 + C_p \times C_{CB} \times \left(\frac{W_p}{V} \right)^b \times T \right)$	W (total D	b = load = inflow + atm.) =	0.458	
$\left 1 + C_P \times C_{CB} \times \left \frac{m_P}{L} \right \times T \right \right $	w (total P	Q (lake outflow) =	1,015	9 [lb/yr] 5 [ac ft/yr]
	V/ (m	odeled lake volume) =		[ac-ft]
	V (11	T = V/Q =) [yr]
		$P_i = W/Q =$		יען 1 [ug/l]
Model Predicted In-Lake [TP]		.,	167.7	[ug/l]
Observed In-Lake [TP]			167.0	[ug/l]
PHOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$				
P	_{sed} (phospho	rus sedimentation) =	285.9	[lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			462.9	9 [lb/yr]

	Load Reduction Table for West Goose								
L	OAD		DELED IN-LAKE V JALITY PARAMET	TROPHIC STATE INDICES (Carlson, 1980) FOR MODELED PARAMETERS					
REDUC-	NET LOAD	[TP]	P SEDIMEN-	TP OUT-	TSI	TSI			
TION		_	TATION	FLOW	[TP]	Avg.			
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	[]			
0%	749	168	286	463	78.0	73.5			
5%	711	161	268	444	77.4	73.3			
10%	674	154	250	424	76.8	73.0			
15%	637	147	232	405	76.1	72.7			
20%	599	139	214	385	75.3	72.4			
25%	562	132	197	364	74.6	72.0			
30%	524	125	180	344	73.7	71.6			
35%	487	117	164	323	72.8	71.2			
40%	449	109	148	302	71.8	70.7			
45%	412	102	132	280	70.8	70.2			
50%	374	94	116	258	69.6	69.6			
55%	337	85	101	236	68.3	69.0			
60%	300	77	86	213	66.8	68.2			
65%	262	69	72	190	65.1	67.3			
70%	225	60	59	166	63.2	66.3			
75%	187	51	46	141	60.9	65.0			
80%	150	42	34	116	58.0	63.4			
85%	112	32	23	89	54.3	61.2			
90%	75	22	13	62	48.9	58.0			
95%	37	12	5	32	39.7	52.3			

WEST	GOOSE LA	KE TMDL				
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Draina	ge Areas					
				Dhaanhama	Loading Calibration	
	Drainage Area	Punoff Denth	Discharge	Phosphorus Concentration	Factor (CF) ¹	Load
	Drainage Area	Runon Beptin	Discharge	Concentiation	ractor (Or)	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	238.78	7.0	139.8	290.4	0.24	26.5
2		-	'		1.0	•
3					1.0	
4 5					1.0 1.0	
Summation	238.78	7.0	139.8	290.4		26.5
Failing Septic Syst	ems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed	238.78	0	5%	7.8	0.0	0.0
2						
3 4						
5						
Summation	238.78	0	5%		0.0	0.0
Inflow from Upstre	am Lakes					
		Runoff Depth	Discharge	Estimated P Concentration	Calibration Factor	Load
Name	Area [ac]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 East Goose	577.55	5.5	270.3	60.0	1.0	44.1
2					1.0	
3			070.0	-	1.0	44.4
Summation			270.3	60.0		44.1
Atmosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
24.1	27.2	27.2	0.00	0.24	1.0	5.8
		Ory-year total P		0.230		
		ige-year total P Vet-year total P		0.240 0.268		
	•		eering 2007)	0.200		
M-Foods Dairy ²		-				
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux	Net Inflow	Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]	cfs	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
24.1		0.8	604.9	15.0	1.0	24.7
Internal, Sediments	S		1		Calibration	
Lake Area	Anoxic Factor	Calc Anoxia		Release Rate	Factor	Load
[acre]	[days]	Jaio / HioAid		[mg/m ² -day]	[]	[lb/yr]
24.1	63.2			2.00	1.0	27.2
Internal Other						
		_			Calibration	
Source	Lake Area	Duration		Release Rate	Factor	Load
Cadter and a	[acre]	[days]		[mg/m ² -day]	[]	[lb/yr]
Sediment re- suspension (e.g.						
1 boating and wind)	24.1	60.0		31.00	0.24	96.0
2	2-7.1	00.0		31.00	1.0	0
-	Net Discha	rge [ac-ft/yr] =	1015.0	Not	Load [lb/yr] =	224.2
NOTES	NOT DISCHA	. 90 [ao 10 yi] -	1010.0	1461		T.L

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Non-contact cooling water sourced from groundwater. Contribution calculated based on discharge sampling and the maximum permitted flow from the facility. There is no other groundwater interaction with the lake.

TMDL Lake Respons	e Mode	eling for West Goose	TMDL	
Modeled Parameter	Equation	Parameters	Valu	ıe [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENT	RATION			
p P./		as f(W,Q,V) from Canfield & Ba	achmann (1	981)
$P = \frac{1}{i}$	\b	C _P =	1.0	00 []
	$\times T$	C _{CB} =		62 []
	ノー 川	b =	0.45	58 []
	(total P load = inflow + atm.) =	22	24 [lb/yr]
		Q (lake outflow) =	1,01	I5 [ac-ft/yr]
		V (modeled lake volume) =	10	os [ac-ft]
		T = V/Q =	0.1	10 [yr]
		$P_i = W/Q =$	3	31 [ug/l]
Model Predicted In-Lake [TP]			59.9	[ug/l]
PHOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$				
-	P _{sed} (pł	nosphorus sedimentation) =	58	.8 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			405	4 10 4
W-P _{sed} =			165	.4 [lb/yr]

WILKINSO	WILKINSON LAKE AVG YEAR Calibration years '01-'05, '07-'09						
	Water Budge				horus Loading		
Inflow from Draina						,	
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]	
1 Direct Watershed	2,972.82	3.6	888.3	306.5	1.0	740.4	
2 3 4 5					1.0 1.0 1.0 1.0		
Summation	2,972.82	4	888.3	306.5		740.4	
Failing Septic Syst	tems						
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]	
1 Direct Watershed 2 3 4 5	2,972.82	0	5%	7.8	0.0	0.0	
Summation	2,972.82	0	5%		0.0	0.0	
Inflow from Upstre	am Lakes						
Name 1 Birch Lake 2 Gilfillan 3 Amelia	Drainage Area [acre] 517.89 531.35 533.47	Runoff Depth [in/yr] 9 0 3	Discharge [ac-ft/yr] 387.7 0 147.6	Estimated P Concentration [ug/L] 32.5 148.0 38.8	Calibration Factor [] 1.0 1.0 1.0	Load [lb/yr] 34.3 0 15.6	
Summation			535	73.1		49.8	
Atmosphere							
Lake Area [acre] 97.1	Avera	Evaporation [in/yr] 31.8 Dry-year total Page-year total P Vet-year total P (Barr Engin	deposition =	Aerial Loading Rate [lb/ac-yr] 0.24 0.230 0.240 0.268	Calibration Factor [] 1.0	Load [lb/yr] 23.3	
Groundwater			<u> </u>				
Lake Area [acre]	Groundwater Flux [m/yr]	Net Inflow cfs 0.01	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L] 69.0	Calibration Factor [] 1.0	Load [lb/yr]	
Internal		0.01	7.5	03.0	1.0	1.7	
Lake Area [acre]	Anoxic Factor [days]	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor [] 1.0	Load [lb/yr] 51.8	
		rge [ac-ft/yr] =	1431.0		Load [lb/yr] =	866.8	
NOTEC	IACT DISCIIG	ige [ac-iuyi] -	1-101.0	MAC	Load [ID/yi] -	0.00	

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Respons Modeling for Wilkinson Calibration Years '01-'05, '07-'09 Modeled Parameter **Parameters Equation** Value [Units] TOTAL IN-LAKE PHOSPHORUS CONCENTRATION as f(W,Q,V) from Canfield & Bachmann (1981) $C_P =$ 1.00 [--] $C_{CB} =$ 0.162 [--] 0.458 [--] \overline{W} (total P load = inflow + atm.) = 867 [lb/yr] Q (lake outflow) = 1,431 [ac-ft/yr] V (modeled lake volume) = 165 [ac-ft] T = V/Q =0.12 [yr] $P_i = W/Q =$ 223 [ug/l] Model Predicted In-Lake [TP] 139.4 [ug/l] Observed In-Lake [TP] 148.8 [ug/l] PHOSPHORUS SEDIMENTATION RATE $P_{sed} = C_P \times C_{CB} \times$ P_{sed} (phosphorus sedimentation) = 324.2 [lb/yr] PHOSPHORUS OUTFLOW LOAD 542.5 [lb/yr] $W-P_{sed} =$

	Load Reduction Table for Wilkinson						
LC	DAD	MODELED IN-LAKE WATER QUALITY PARAMETERS			TROPHIC STATE INDICES (Carlson, 1980) FOR MODELED PARAMETERS		
REDUC-	NET LOAD	[TP]	P SEDIMEN-	TP OUT-	TSI	TSI	
TION			TATION	FLOW	[TP]	Avg.	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	[]	
0%	867	139	324	543	75.3	71.0	
5%	823	134	304	520	74.7	70.7	
10%	780	128	283	497	74.1	70.3	
15%	737	122	263	474	73.4	70.0	
20%	693	116	243	450	72.7	69.6	
25%	650	110	223	427	71.9	69.1	
30%	607	103	204	402	71.0	68.7	
35%	563	97	185	378	70.1	68.1	
40%	520	91	167	353	69.2	67.6	
45%	477	84	149	328	68.1	66.9	
50%	433	78	131	302	66.9	66.2	
55%	390	71	114	276	65.6	65.4	
60%	347	64	98	249	64.1	64.5	
65%	303	57	82	222	62.4	63.4	
70%	260	50	67	193	60.5	62.1	
75%	217	42	52	165	58.1	60.6	
80%	173	35	39	135	55.3	58.6	
85%	130	27	26	104	51.5	56.1	
90%	87	18	15	72	46.2	52.6	
95%	43	10	6	38	36.9	46.5	

WILKINSON LA	KE TMDL					
	Water Budge	ts		Phosp	horus Loading	3
Inflow from Draina	ge Areas			-		
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct Watershed	2,972.82	3.6	888.3	306.5	0.264	195.5
2 3 4 5					1.0 1.0 1.0 1.0	
Summation	2,972.82	4	888.3	306.5		195.5
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct Watershed 2 3 4 5	2,972.82	0	5%	7.8	0.0	0.0
Summation	2,972.82	0	5%		0.0	0.0
Inflow from Upstre	am Lakes					
Name 1 Birch Lake 2 Gilfillan 3 Amelia	Drainage Area [acre] 517.89 531.35 533.47	Runoff Depth [in/yr] 9.0 0.0 3.3	Discharge [ac-ft/yr] 387.7 0 147.6	Estimated P Concentration [ug/L] 32.5 60.0 38.8	Calibration Factor [] 1.0 1.0	Load [lb/yr] 34.3 0 15.6
Summation			535	43.8		49.8
Atmosphere Lake Area	Precipitation	Evaporation	Net Inflow	Aerial Loading Rate	Calibration Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
97.1	Avera	31.8 Dry-year total P age-year total P Vet-year total P (Barr Engin	deposition =	0.24 0.230 0.240 0.268	1.0	23.3
Groundwater						
Lake Area [acre]	Groundwater Flux [m/yr]	Net Inflow cfs 0.01	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor []	Load [lb/yr]
97.1	<u> </u>	0.01	7.5	69.0	1.0	1.4
Lake Area [acre] 97.1	Anoxic Factor [days]	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor []	Load [lb/yr] 51.8
37.1		rae lee filisi –	1424.0			
NOTES	Net Discha	rge [ac-ft/yr] =	1431.0	Net	Load [lb/yr] =	321.8

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Respo	nse Modeling f	for Wilkinson La	ake TMDL
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONC	ENTRATION		
P_{\cdot}		Q,V) from Canfield & Bad	chmann (1981)
$P = \frac{1}{2}$	$(W_{-})^{b}$	C _P =	1.00 []
$P = \frac{1}{1 + C_P \times C_{CB}} \times \left(\frac{1 + C_P \times C_{CB}}{1 + C_P \times C_{CB}} \times \frac{1}{1 + C_P} \times \frac{1}$	$\frac{HP}{V} \mid \times T \parallel$	C _{CB} =	0.162 []
	·	b =	0.458 []
	W (total P lo	oad = inflow + atm.) =	322 [lb/yr]
		Q (lake outflow) =	1,431 [ac-ft/yr]
	V (mo	odeled lake volume) =	165 [ac-ft]
		T = V/Q =	0.12 [yr]
		$P_i = W/Q =$	83 [ug/l]
Model Predicted In-Lake [TP]			59.9 [ug/l]
PHOSPHORUS SEDIMENTATION RATE	=		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b$	$\times [TP] \times V$		
	P _{sed} (phosphor	us sedimentation) =	88.6 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			233.3 [lb/yr]

Gil	lfillan Lake	Avg Year		Calibration	Years '06-	· '1 0
	Water Budge	ets		Phosp	horus Loadinç	3
Inflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	531.35	1.15	51	122.5	1.0	17.0
2 3 4 5			'		1.0 1.0 1.0 1.0	ľ
Summation	531.35	1	51	122.5		17.0
Failing Septic Syst	ems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed 2 3 4 5	531.35	39	8%	7.8	0.0	24.3
Summation	531.35	39	8%		0.0	24.3
Inflow from Upstre	am Lakes					
Name 1 2 3 Summation			Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Calibration Factor [] 1.0 1.0 1.0	Load [lb/yr]
Atmosphere						
Lake Area [acre]	Precipitation [in/yr]	Evaporation [in/yr] 25.5	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr] 0.24	Calibration Factor []	Load [lb/yr]
	Avera	Dry-year total P age-year total P Vet-year total P (Barr Engin	deposition =	0.230 0.240 0.268		
Groundwater						
Lake Area [acre] 99.2	Groundwater Flux [m/yr]	Net Inflow cfs 0.0	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor [] 1.0	Load [lb/yr]
Internal						
Lake Area [acre] 99.2	Anoxic Factor [days] 58.8	Calc Anoxia		Release Rate [mg/m²-day] 7.00	Calibration Factor [] 1.0	Load [lb/yr] 364.2
	Net Inf	low [ac-ft/yr] =	70.9	Net	Load [lb/yr] =	429.4

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Lake Response	Modeling fo	or Gilfillan Lake	Avg Ye	ear
Modeled Parameter E- TOTAL IN-LAKE PHOSPHORUS CONCENTR	quation	Parameters	Value	e [Units]
D /		,V) from Canfield & Bac	hmann (198	31)
$P = \frac{P_i}{I}$		C _□ =	1.00	•
$P = \frac{1}{\sqrt{1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)}}$	$\times T$	C _{CB} =	0.162	2 []
		b =	0.458	
	W (total P lo	ad = inflow + atm.) =	429	9 [lb/yr]
Q (lake outflow; for Gilfil	lan Lake, outflow	is to groundwater)* =	125	5 [ac-ft/yr]
	V (mo	deled lake volume) =	359.10	[ac-ft]
		T = V/Q =	2.86	5 [yr]
		$P_i = W/Q =$	1259	9 [ug/l]
Model Predicted In-Lake [TP]		·	147.6	[ug/l]
Observed In-Lake [TP]			138.3	[ug/l]
PHOSPHORUS SEDIMENTATION RATE	_			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$				
	P _{sed} (phosphore	us sedimentation) =	379.1	ן [lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			50.3	3 [lb/yr]

^{*} Outflow is to groundwater. Augmentation was not occurring during the calibration period and is not reflected in the existing conditions modeled inflows or lake volume. For Gilfillan Lake existing conditions, inflow ≠ outflow.

	Load Reduction Table for Gilfillan								
LOAD MODELED IN-LAKE WATER QUALITY PARAMETERS				TROPHIC STA (Carlson, 1 MODELED PA	980) FOR				
REDUC-	NET LOAD	[TP]	P SEDIMEN-	TP OUT-	TSI	TSI			
TION			TATION	FLOW	[TP]	Avg.			
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	[]			
0%	429	148	379	50	76.2	72.2			
5%	408	143	359	49	75.7	71.9			
10%	386	139	339	47	75.3	71.7			
15%	365	134	319	46	74.8	71.4			
20%	344	129	300	44	74.2	71.1			
25%	322	124	280	42	73.7	70.7			
30%	301	119	260	41	73.1	70.4			
35%	279	114	240	39	72.4	70.0			
40%	258	109	221	37	71.7	69.6			
45%	236	103	201	35	71.0	69.1			
50%	215	97	182	33	70.1	68.6			
55%	193	91	162	31	69.2	68.0			
60%	172	85	143	29	68.2	67.3			
65%	150	78	124	27	67.0	66.6			
70%	129	71	105	24	65.6	65.7			
75%	107	63	86	22	63.9	64.6			
80%	86	55	67	19	61.9	63.2			
85%	64	45	49	15	59.2	61.4			
90%	43	35	31	12	55.3	58.8			
95%	21	22	14	7	48.5	54.2			

Note: The relationship shown on this table reflects pre-augmentation conditions. To develop the load reduction to set the TMDL, the augmentation condition was added to the existing conditions model and the load reductions were taken from that condition. Therefore, the existing conditions table included here does not directly show the relationship between load reduction and in lake concentration. However, this relationship can be seen by reversing the reductions in the TMDL model.

	Gilfillan La	ake TMDL				
	Water Budge	ts		Phosp	horus Loading	J
Inflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed	531.35	1.2	51.1	122.5	1.0	17.0
2 3 4 5					1.0 1.0 1.0 1.0	
Summation	531.35	1	51.1	122.5		17.0
Failing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Watershed 2 3 4 5	531.35	39	0%	7.8	0.0	0.0
Summation	531.35	39	0%		0.0	0.0
Inflow from Upstre	am Lakes					
Name 1 Pleasant	Drainage Area [acre]	Runoff Depth [in/yr] 6.6	Discharge [ac-ft/yr] 54.5	Estimated P Concentration [ug/L] 54.0	Calibration Factor [] 1.0	Load [lb/yr] 8.0
2 3				-	1.0 1.0	
Summation			54.5	54.0		8.0
Atmosphere						
Lake Area [acre]	Precipitation [in/yr]	Evaporation [in/yr]	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr]	Calibration Factor []	Load [lb/yr]
99.2	27.9	25.5	19.84	0.24	1.0	23.8
	Avera	Dry-year total P age-year total P Vet-year total P (Barr Engin	deposition =	0.230 0.240 0.268		
Groundwater						
Lake Area [acre]	Groundwater Flux [m/yr]	Net Inflow cfs	Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Calibration Factor []	Load [lb/yr]
99.2		0.0	0	0	1.0	0
Internal Lake Area [acre]	Anoxic Factor [days]	Calc Anoxia		Release Rate [mg/m²-day]	Calibration Factor []	Load [lb/yr]
99.2	58.8			7.00	0.318	115.8
NOTES	Net Inf	low [ac-ft/yr] =	125.4	Net	Load [lb/yr] =	164.7

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

	Lake Response Modeling f	for Gilfillan Lake	TMDL
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHO	SPHORUS CONCENTRATION		
	as f(W,C	Q,V) from Canfield & Bac	chmann (1981)
		C _P =	1.00 []
		C _{CB} =	0.162 []
		b =	0.458 []
	W (total P l	oad = inflow + atm.) =	165 [lb/yr]
	Q (lake outflow; for Gilfillan Lake, outflow	is to groundwater)* =	125 [ac-ft/yr]
	V (mo	odeled lake volume) =	714 [ac-ft]
		T = V/Q =	5.69 [yr]
		$P_i = W/Q =$	483 [ug/l]
Model Predicted In-	Lake [TP]		60.0 [ug/l]
PHOSPHORUS SEDII	MENTATION RATE		
		rus sedimentation) =	144.2 [lb/yr]
PHOSPHORUS OUTF			00 5 511-7 3
	W-P _{sed} =		20.5 [lb/yr]

Outflow is to groundwater. The TMDL condition model includes inflow from augmentation from Pleasant Lake. The lake volume reflects conditions under augmentation. For the TMDL model, inflow = outflow.

Appendix B

WLA Partitioning Summary Tables and Other Information Tables

- Table B.1: Impaired Waters Subwatershed Areas
- Table B.2: Total Watershed Areas & Land Use

Breakdowns (Includes Lake Surface Area)

- Table B.3: Gem Lake Land Use Areas by MS4
- Table B.4: Goose Lake East Land Use Areas by MS4
- Table B.5: Goose Lake West Land Use Areas by MS4
- Table B.6: Lake Gilfillan Land Use Areas by MS4
- Table B.7: Lake Wilkinson Land Use Areas by MS4
- Table B.8: Lambert Creek Land Use Areas by MS4
- Table B.9: Percent Watershed Area by MS4
- Table B.10: P8 Model Results Summary
- Table B.11: Watershed Phosphorus Loading
- Table B.12: Lake Water Budgets
- Table B.13: Lake Phosphorus Budgets
- Table B.14: TMDL Equations (lbs/day)
- Table B.15: TMDL Equations (lbs/yr)
- Table B.16: MS4 WLA (lbs/year)
- Table B.17: MS4 WLA (lbs/day)
- Table B.18: Summary Data for Gem Lake Subwatershed
- Table B.19: Gem Lake Nutrient Sources by Category (lbs TP/year)
- Table B.20: Gem Lake Overall CN Calcs
- Table B.21: Gem Lake Area of Landuse Category by MS4 (acres)
- Table B.22: Categorical CNs by Landuse for Gem Lake Subwatershed
- Table B.23: Categorical % Impervious by Landuse for Gem Lake Subwatershed
- Table B.24: Gem Lake P8 Input
- Table B.25: Summary Data for East Goose Lake Subwatershed
- Table B.26: East Goose Lake Nutrient Sources by Category (Ibs TP/year)
- Table B.27: East Goose Lake Overall CN Calcs
- Table B.28: East Goose Area of Landuse Category by MS4 (acres)
- Table B.29: Categorical CNs by Landuse for Gem Lake Subwatershed
- Table B.30: Categorical % Impervious by Landuse for East Goose Lake Subwatershed
- Table B.31: East Goose Lake P8 Input
- Table B.32: Summary Data for West Goose Lake Subwatershed

- Table B.33: West Goose Lake Nutrient Sources by Category (lbs TP/year)
- Table B.34: West Goose Lake Overall CN Calcs
- Table B.35: West Goose Lake Area of Landuse Category by MS4 (acres)
- Table B.36: Categorical CNs by Landuse for West Goose Lake Subwatershed
- Table B.37: Categorical % Impervious by Landuse for West Goose Lake Subwatershed
- Table B.38: West Goose Lake P8 Input
- Table B.39: Summary Data for Gilfillan Lake Subwatershed
- Table B.40: Gilfillan Lake Nutrient Sources by Category (lbs TP/year)
- Table B.41: Gilfillan Lake Overall CN Calcs
- Table B.42: Gilfillan Lake Area of Landuse Category by MS4 (acres)
- Table B.43: Categorical CNs by Landuse for Gilfillan Lake Subwatershed
- Table B.44: Categorical % Impervious by Landuse for Gilfillan Lake Subwatershed
- Table B.45: Gilfillan Lake P8 Input
- Table B.46: Summary Data for Wilkinson Lake Subwatershed
- Table B.47: Wilkinson Lake Nutrient Sources by Category (lbs TP/year)
- Table B.48: Wilkinson Lake Overall CN Calcs
- Table B.49: Wilkinson Lake Area of Landuse Category by MS4 (acres)
- Table B.50: Categorical CNs by Landuse for Wilkinson Lake Subwatershed
- Table B.51: Categorical % Impervious by Landuse for Wilkinson Lake Subwatershed
- Table B.52: Wilkinson Lake P8 Input
- Table B.53: Summary Data for Lambert Creek Subwatershed
- Table B.54: Lambert Creek Overall CN Calcs
- Table B55: Lambert Creek Area of Landuse Category by MS4 (acres)
- Table B.56: Categorical CNs by Landuse for Lambert Creek Subwatershed
- Table B.57: Categorical % Impervious by Landuse for Lambert Creek Subwatershed

Table B.1: Impaired Waters Sub-watershed Areas

	The same watershed Areas						
				Subwatershed Area (Excluding			
	Total Subwatershed Area (I	ncludes Lake Surface Area)	Lake Surface Area	Lake Surface)			
Waterbody	ID#		(acres)				
Gem Lake	2011505	327.94	21.6	306.34			
East Goose Lake	2011504	693.85	116.3	577.55			
West Goose Lake	20115044	262.88	24.1	238.78			
Gilfillan Lake	2007902	630.55	99.2*	531.35			
Wilkinson	2007901 (Birch Lake)	640.83					
	2007903 (Amelia Lake)	691.33					
	2007902 (Gilfillan Lake)	630.55					
	2007904	3069.92	97.1	2972.82			
	Total	5032.63	97.1	4935.53			
Lambert Creek	2011504	693.85		•			
	2011505	327.94					
	20115044	262.88					
	20115055	3657.95					
	Total	4942.62					

^{*} Varies over calibration period due to lake level changes

Sources: Lake Areas were calculated from shorelines digitized from 2010 Aerial Photos
Subwatersheds were delineated to each lake/stream outlet based on topographic maps

Table B.2: Total Watershed Areas & Land Use Breakdowns (Includes Lake Surface Area)

Impaired Water (Subwatershed Identification ¹)	Gem Lake (2011505)		East Goose Lake (2011504)		West Goose Lake (20115044)		Lake Gilfillan (2007902)		Lake Wilkinson (2007901, 2007902, 2007903, 2007904)		Lambert Creek (2011504, 2011505, 20115044, 20115055)	
Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%
Agricultural	12.44	4%	0.0	0%	0.0	0%	0.0	0%	313.83	6%	39.31	1%
Commercial	35.70	11%	43.36	6%	18.66	7%	14.59	2%	168.16	3%	221.44	4%
Industrial	0.0	0%	0.0	0%	15.45	6%	0.05	0.01%	145.03	3%	161.72	3%
Institutional	0.0	0%	46.65	7%	0.0	0%	7.68	1%	54.50	1%	150.25	3%
Major Highway	10.78	3%	18.77	3%	17.94	7%	0.0	0%	166.00	3%	140.36	3%
Mixed Use	0.13	0.04%	0.0	0%	0.0	0%	0.0	0%	29.86	1%	11.99	0.24%
Multi-Family Residential	0.0	0%	49.10	7%	6.82	3%	53.39	8%	204.17	4%	305.16	6%
Open Water	32.26	10%	112.46	16%	27.96	11%	118.55	19%	545.48	11%	264.83	5%
Park and Recreation	0.21	0.07%	11.46	2%	36.54	14%	58.47	9%	964.92	19%	312.08	6%
Single Family Residential	89.32	27%	402.20	58%	74.33	28%	326.69	52%	1213.44	24%	2168.18	44%
Undeveloped	147.09	45%	9.85	1%	65.17	25%	51.14	8%	1227.26	24%	1167.31	24%
Total	327.95	100%	693.85	100%	262.87	100%	630.55	100%	5032.65	100%	4942.63	100%

Source: 2005 Met Council Land Use Database

¹ Subwatershed identification numbers originated from the DNR Lakeshed HU_ID. Identification numbers were modified as necessary during GIS mapping and data processing to provide unique IDs for each subwatershed.

Table B.3 Gem Lake Land Use Areas by MS4

Area Downstream of Boundary Condition (Subwatershed ID# 2011505)	TOTAL	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
•	IOIAL	City Wi34		Rainsey County	10134	City Wi34	MINDO	%	City IVI34
Landuse Category/ MS4			Acres						
Agricultural	12.44	11.81		0.63		3.86%		0.21%	
Commercial	35.70	29.50		3.59	2.62	9.63%		1.17%	0.86%
Industrial	0.00								
Institutional	0.00								
Major Highway	10.78	5.33	5.45			1.74%	1.78%		
Mixed Use	0.13			0.13				0.04%	
Multi-Family Residential	0.00								
Open Water*	10.66	10.66				3.48%			
Park and Recreation	0.21	0.21				0.07%			
Single Family Residential	89.32	81.73		2.02	5.58	26.68%		0.66%	1.82%
Undeveloped	147.09	145.20		0.85	1.05	47.40%		0.28%	0.34%
TOTAL	306.35	284.43	5.45	7.22	9.24	92.85%	1.78%	2.36%	3.02%

^{*} Excludes Lake Area

Table B.4 Goose Lake - East Land Use Areas by MS4

Area Downstream of Boundary					White Bear					
Condition (Subwatershed ID#		Gem Lake			Lake City	Gem Lake		Ramsey	White Bear Lake	
2011504)	TOTAL	City MS4	MNDOT	Ramsey County	MS4	City MS4	MNDOT	County	City MS4	
Landuse Category/ MS4	Acres							%		
Agricultural	0.00									
Commercial	43.36	3.16		4.07	36.13	0.54%		0.70%	6.21%	
Industrial	0.00									
Institutional	46.65			0.76	45.88			0.13%	7.89%	
Major Highway	18.77	0.11	17.59		1.07	0.02%	3.03%		0.18%	
Mixed Use	0.00					0.00%				
Multi-Family Residential	49.10			0.48	48.63	0.00%		0.08%	8.36%	
Open Water*	0.00					0.00%		0.00%	0.00%	
Park and Recreation	11.46			1.09	10.36			0.19%	1.78%	
Single Family Residential	402.20	0.31		24.08	377.80	0.05%		4.14%	64.98%	
Undeveloped	9.85			0.74	9.10			0.13%	1.57%	
TOTAL	581.39	3.59	17.59	31.23	528.98	0.62%	3.03%	5.37%	90.99%	

^{*} Excludes Lake Area

Table B.5 Goose Lake - West Land Use Areas by MS4

Area Downstream of Boundary					White Bear				
Condition (Subwatershed ID#		Gem Lake			Lake City	Gem Lake		Ramsey	White Bear Lake
20115044)	TOTAL	City MS4	MNDOT	Ramsey County	MS4	City MS4	MNDOT	County	City MS4
Landuse Category/ MS4			Acres					%	
Agricultural	0.00								
Commercial	18.66			2.56	16.11			1.07%	6.75%
Industrial	15.45			2.79	12.66			1.17%	5.30%
Institutional	0.00								
Major Highway	17.94		17.72	0.21	0.01		7.42%	0.09%	0.01%
Mixed Use	0.00								
Multi-Family Residential	6.82	0.82		1.25	4.74	0.35%		0.52%	1.99%
Open Water*	3.86	3.86				1.62%			
Park and Recreation	36.54	36.53		0.01		15.30%		0.00%	
Single Family Residential	74.33	56.35		8.28	9.69	23.60%		3.47%	4.06%
Undeveloped	65.17	45.85		3.16	16.16	19.20%		1.32%	6.77%
TOTAL	238.77	143.42	17.72	18.25	59.38	60.07%	7.42%	7.64%	24.87%

^{*} Excludes Lake Area

Table B.6 Lake Gilfillan Land Use Areas by MS4

Area Downstream of Boundary		North	Vadnais		White Bear		Vadnais		
Condition (Subwatershed ID#		Oaks City	Heights City		Township	North Oaks	Heights City	Ramsey	White Bear
20115044)	TOTAL	MS4	MS4	Ramsey County	MS4	City MS4	MS4	County	Township MS4
Landuse Category/ MS4			Acres					%	
Agricultural	0.00								
Commercial	14.59		3.62	2.10	8.87		0.68%	0.39%	1.67%
Industrial	0.05		0.05				0.01%		
Institutional	7.68			1.23	6.44			0.23%	1.21%
Major Highway	0.00								
Mixed Use	0.00								
Multi-Family Residential	53.39	9.16		0.18	44.05	1.72%		0.03%	8.29%
Open Water*	19.35	5.49	3.93	0.96	8.97	1.03%	0.74%	0.18%	1.69%
Park and Recreation	58.47	43.35		0.41	14.71	8.16%		0.08%	2.77%
Single Family Residential	326.69	295.37	19.08	10.61	1.64	55.59%	3.59%	2.00%	0.31%
Undeveloped	51.14	14.83	16.56	3.73	16.02	2.79%	3.12%	0.70%	3.02%
TOTAL	531.35	368.20	43.23	19.21	100.70	69.30%	8.14%	3.62%	18.95%

^{*} Excludes Lake Area

Table B.7 Lake Wilkinson Land Use Areas by MS4

Area Downstream of Boundary								White Bear						White	
Condition (Subwatershed ID#		Anoka	Lino Lakes City		North Oaks	Ramsey	White Bear	Township		Lino Lakes		North Oaks	Ramsey	Bear Lake	White Bear
2007904)	TOTAL	County	MS4	MNDOT	City MS4	County	Lake City MS4	MS4	Anoka County	City MS4	MNDOT	City MS4	County	City MS4	Township MS4
Landuse Category/ MS4				Ac	res							%			
Agricultural	157.40	1.96	95.66		17.89	0.75		41.14	0.07%	3.22%		0.60%	0.03%		1.38%
Commercial	29.85	0.02	0.05		1.84	0.72	11.15	16.07	0.001%	0.002%		0.06%	0.02%	0.37%	0.54%
Industrial	124.71					2.16	5.66	116.90					0.07%	0.19%	3.93%
Institutional	32.57				5.78	1.29		25.50				0.19%	0.04%		0.86%
Major Highway	74.40			72.78			0.01	1.61			2.45%			0.00%	0.05%
Mixed Use	29.86					0.29	28.56	1.01					0.01%	0.96%	0.03%
Multi-Family Residential	74.41				9.48	1.48	19.94	43.50				0.32%	0.05%	0.67%	1.46%
Open Water*	49.03				23.65			25.38				0.80%			0.85%
Park and Recreation	896.26		0.03		496.31	12.25	34.70	352.97		0.001%		16.69%	0.41%	1.17%	11.87%
Single Family Residential	639.32	2.24	22.45		365.21	10.76	23.39	215.28	0.08%	0.76%		12.28%	0.36%	0.79%	7.24%
Undeveloped	865.01	6.11	132.83	•	418.31	23.22	31.30	253.24	0.21%	4.47%		14.07%	0.78%	1.05%	8.52%
TOTAL	2972.84	10.34	251.03	72.78	1338.46	52.92	154.71	1092.61	0.35%	8.44%	2.45%	45.02%	1.78%	5.20%	36.75%

^{*} Excludes Lake Area

Table B.8 Lambert Creek Land Use Areas by MS4

Table D.0 Lambert Creek Land O3	C 7 ti Cub w v 1116 1												
Area Downstream of Boundary	/				Vadnais	White Bear					Vadnais	White Bear	White Bear
Condition (Subwatershed ID#		Gem Lake		Ramsey	Heights City	Lake City	White Bear	Gem Lake		Ramsey	Heights	Lake City	Township
20115055)	TOTAL	City MS4	MNDOT	County	MS4	MS4	Township MS4	City MS4	MNDOT	County	City MS4	MS4	MS4
Landuse Category/ MS4				Acres						%			
Agricultural	26.8	7		2.94	23.93					0.08%	0.65%		
Commercial	122.2	5		8.26	77.63	35.39	0.98			0.23%	2.12%	0.97%	0.03%
Industrial	146.2	2		3.56	35.43	56.85	50.38			0.10%	0.97%	1.55%	1.38%
Institutional	103.4	1.72		4.81	16.07	78.04	2.85	0.05%		0.13%	0.44%	2.13%	0.08%
Major Highway	97.1	5	79.24	7.17	3.91	6.83			2.17%	0.20%	0.11%	0.19%	
Mixed Use	11.8	õ		0.12	7.45	0.42	3.87			0.00%	0.20%	0.01%	0.11%
Multi-Family Residential	248.9	9		4.57	131.35	41.16	71.92			0.12%	3.59%	1.13%	1.97%
Open Water	92.1	1			1.32	0.38	90.44				0.04%	0.01%	2.47%
Park and Recreation	263.8	18.96		7.58	168.00	40.48	28.84	0.52%		0.21%	4.59%	1.11%	0.79%
Single Family Residential	1602.0	86.30		39.66	819.44	475.94	180.69	2.36%		1.08%	22.40%	13.01%	4.94%
Undeveloped	943.0	67.39		22.66	629.85	58.62	164.55	1.84%		0.62%	17.22%	1.60%	4.50%
TO	TAL 3657.9	174.38	79.24	101.33	1914.37	794.12	594.52	4.77%	2.17%	2.77%	52.33%	21.71%	16.25%

Sources (Tables B.1 to B.8): Met Council 2005 Land Use Database

 $T:\2255\ VLAWMO\08_TMDL\Report\[Tables.xlsx]Landuse\ by\ subwatershed$

			Tabl	e B.9: Percent Wa	tershed Are	ea by MS4			
Lake	Anoka County	Gem Lake City MS4	Lino Lakes City MS4	MNDOT	North Oaks City MS4	Ramsey County	Vadnais Heights City MS4	White Bear Lake City MS4	White Bear Township MS4
Gem		92.85%		1.78%		2.36%		3.02%	
Goose - East		0.62%		3.03%		5.37%		90.99%	
Goose - West		60.07%		7.42%		7.64%		24.87%	
Lake Gilfillan					69.30%	3.62%	8.14%		18.95%
Lake Wilkinson	0.35%		8.44%	2.45%	45.02%	1.78%		5.20%	36.75%
Lambert Creek		4.77%		2.17%		2.77%	52.33%	21.71%	16.25%

Table B.10: P8 Model Results Summary

		Annual	
		Average	Annual
		Runoff	Average
		Volume (ac-	Runoff Depth
Waterbody	Subwatershed ID#	ft/yr)	(in/yr)
Gem Lake	2011505	81	3.2
East Goose Lake	2011504	266	5.5
West Goose Lake	20115044	140	7
Gilfillan Lake	2007902	51	1.2
	2007901	388	9.0
Wilkinson	2007903	148	3.3
	2007904	888	3.6

* Source: P8 model

Table B.11: Watershed Phosphorus Loading

			Phosphorus Con	centration (ug/l)	Phosphorus	Load (lbs/yr)	Phosphoru (lbs/aci	•
Waterbody	Subwatershed ID#	Subwatershed Area*** (acres)	Benchmark	TMDL	Benchmark	TMDL	Benchmark	TMDL
Gem Lake	2011505	306.34	281.6	225.2	62.1	49.7	0.203	0.162
East Goose Lake	2011504	577.55	297.0	121.8	214.8	88.1	0.372	0.152
West Goose Lake	20115044	238.78	290.4	69.7	110.4	26.5	0.462	0.111
Gilfillan Lake	2007902	531.35	122.5	122.5	17.0	17.0	0.032	0.032
	2007901* (Birch Lake)	517.89	32.5	32.5	34.3	34.3	0.066	0.066
Wilkinson	2007903* (Amelia Lake)	533.47	38.8	38.8	15.6	15.6	0.029	0.029
VVIIKIIISOII	2007904	2972.82	306.5	80.9	740.4	195.5	0.249	0.066
	2007902 Gilfillan Lake**	531.35	148.0	60.0	0.0	0.0	0	0

^{*} Measured Lake Outflow

^{**} Gilfillan Lake did not discharge during the calibration period

^{***} Excludes lake surface area

Table B.12: Lake Water Budgets

	-			e Annual ed Runoff	Discharge from Upstream Lakes***	Precipita	ation*	M-Foods D	Dairy, LLC	Ground	lwater	Evapo	oration	Surface	· Outflow	Σ inputs + Σ outputs (ac- ft/yr)
		Recomme		in/yr over		in/yr over		in/yr over		in/yr		in/yr		in/yr		
		nded		watershe		lake		lake		over		over		over		
Waterbody	Calibration Years	Baseline	ac-ft/yr	d	ac-ft/yr	surface	ac-ft/yr	surface	ac-ft/yr	lake	ac-ft/yr	lake	ac-ft/yr	lake	ac-ft/yr	
	2000-2005 and															
Gem Lake	2007-2009	2007	81.1	3.2	-	32.0	57.6	-	-	0.0	0.0	(32.0)	(57.6)	(45.0)	(81.0)	0.1
East Goose Lake	2007-2009	2007	265.9	5.5	-	27.2	263.6	-		0.5	4.4	(27.2)	(263.6)	(27.9)	(270.0)	0.3
West Goose Lak	2007-2010	2007	139.8	7	270.3	27.2	54.6	301.2	604.9	-	-	(27.2)	(54.6)	(505.4)	(1015.0)	(0.0)
Gilfillin Lake**	2006-2010	2007	51.1	1.2	-	27.9	230.2	-	-	(15.2)	(125.4)	(25.5)	(210.4)	0.0	0.0	(54.5)
	2001-2005 and															
Wilkinson Lake	2007-2009	2007	888.3	3.6	535.0	31.8	257.3	-	-	0.9	7.5	(31.8)	(257.3)	(176.8)	(1431.0)	(0.2)

^{*} Average precipitation varies due to variation in calibration years

^{**} Gilfillan Lake level/ volume was declined over the calibration period (pumping to augment the lake and artificially raise the lake level was not performed). A more recent calibration period was used to reflect changing lake levels and lake volumes through calibration period (evident in water balance). The loss modeled translates into about 6.6 inches per year based on an average condition observed over the calibration period

^{***} For Wilkinson lake, calculated based on 9 in/yr of runoff over the Birch Lake sub-watershed and 3.3 in/yr of runoff over the Amelia Lake sub-watershed

Table B.13: Lake Phosphorus Budgets

				Phosphorus Sour	ces			Phosphorus Sinks		
	Watershed	Septic Systems	Upstream Lakes	Atmosphere	M-Foods Dairy, LLc.	Groundwater	Internal	Phosphorus Sedimentation	Lake Outflow	Σ sources + Σ sinks
Waterbody					lbs	s/yr				
Gem Lake	62.1	5.1	0.0	5.2	-	0.0	0.0	(56.6)	(15.8)	0.0
East Goose Lake	214.8	0.0	0.0	27.9	-	0.8	1777.2	(1831.4)	(189.3)	0.0
West Goose Lake	110.4	0.0	189.1	5.8	16.5	-	427.1	(285.9)	(462.9)	0.1
Gilfillan Lake	17.0	24.3	0.0	23.8	-	0.0	364.2	(379.1)	(50.3)	(0.1)
Wilkinson Lake	740.4	0.0	49.8	23.3	-	1.4	51.8	(324.2)	(542.5)	0.0

(Source: Canfield Backmann Modeling)

Table B.14: TMDL Equations (lbs/day)

Annual TP Loading (lb/yr)	TMDL =	LA +	WLA+	MOS
Gem	54.9	5.2	47.0	2.7
Goose - East	187.9	99.8	78.7	9.4
Goose - West	224.2	173.0	40.0	11.2
Lake Gilfillan	164.7	139.4	17.0	8.3
Lake Wilkinson	321.8	126.4	179.4	16.1

Table B.15: TMDL Equations (lbs/yr)

•	<u> </u>			
Daily TP Loading (lb/day)	TMDL =	LA +	WLA+	MOS
Gem	0.150	0.014	0.129	0.008
Goose - East	0.514	0.273	0.215	0.026
Goose - West	0.614	0.474	0.109	0.031
Lake Gilfillan	0.451	0.382	0.047	0.022
Lake Wilkinson	0.881	0.346	0.491	0.044

Table B.16: MS4 WLA (lbs/year)

							MS4	S	_		
Lake	WLA (lbs/yr)	M-Foods Dairy, LLC.(1)	Anoka County		Lino Lakes City MS4	MNDOT	North Oaks City MS4	Ramsey County	Vadnais Heights City MS4	White Bear Lake City MS4	White Bear Township MS4
Gem	47.0	-	-	23.9	-	5.2	-	9.0	-	8.9	-
Goose - East	78.7	-	-	2.2	-	7.9	-	3.9	-	64.7	-
Goose - West	40.0	24.7	-	2.8	-	3.6	-	1.6	-	7.3	-
Lake Gilfillan	17.0	-	1	-	-	-	14.7	0.5	0.1	-	1.7
Lake Wilkinson	179.4	-	0.1	-	1.2	47.2	26.4	1.8	-	35.1	67.6

⁽¹⁾ WLA may be expanded in the future. See Section 6.1.3

Table B.17: MS4 WLA (lbs/day)

							MS4	S			
Lake	WLA (lbs/day)	M-Foods Dairy, LLC.(1)	Anoka County	Gem Lake City MS4	Lino Lakes City MS4	MNDOT	North Oaks City MS4	Ramsey County	Vadnais Heights City MS4	White Bear Lake City MS4	White Bear Township MS4
Gem	0.129	-	-	0.065	-	0.014	-	0.025	-	0.025	-
Goose - East	0.215	-	-	0.006	-	0.022	-	0.011	-	0.176	-
Goose - West	0.109	0.068	-	0.007	-	0.010	-	0.004	-	0.020	-
Lake Gilfillan	0.047	-		-	-	-	0.041	0.001	<0.001	-	0.005
Lake Wilkinson	0.491	-	<0.001	-	0.003	0.129	0.072	0.006	-	0.096	0.185

⁽¹⁾ WLA may be expanded in the future. See Section 6.1.3

Table B.18: SUMMARY DATA FOR GEM LAKE SUBWATERSHED

	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4	Overall
Resultant CN	64	78	81	78	65
Resultant Area (ac)	284.4	5.5	7.2	9.2	306.35
% Area	93%	2%	2%	3%	100%
Overall % Impervious	20%	46%	54%	45%	
Overall Impervious Area (ac)	57.76	2.51	3.88	4.12	68.27
S	5.73	2.82	2.39	2.79	
SRO (inches)	0.021	0.233	0.305	0.237	0.796
RO Volume (ac-ft)	0.489	0.106	0.184	0.183	0.961
% SRO= Proposed Partition of					
Existing Loads	50.86%	11.02%	19.11%	19.01%	100.00%

Where S=(1000/CN)-10

And Runoff Event P (inches)= 1.5

Table B.19: Gem Lake Nutrient Sources by Category (lbs TP/ year)

	Watershed	Septics	Internal	Precipitation & Groundwater	Total	Concentration (ug/L)
Average Year	62	5	0	5	72	72
W/ Reductions	50	0	0	5	55	60
% Reduction	20%	100%	NA	0%	24%	16%

(Source: Canfield Bachmann Model)

Table B.20: Gem Lake C	Overall CN calcs									Resultant CN-
										Categorical CN for
				Impervious			Pervious	Pervious	Pervious	Gem Lake Sub by
Lake	Subwatershed ID	Landuse Type:	Area (ac)	Area (%)	Impervious Area (ac)	Impervous CN	Area (%)	Area (ac)	CN	Landuse
Gem Lake	2011505	Agricultural	12.44	5%	0.62	98	95%	11.82	61	63
Gem Lake	2011505	Commercial	35.70	85%	30.35	98	15%	5.36	61	92
Gem Lake	2011505	Major Highway	10.78	46%	4.96	98	54%	5.82	61	78
Gem Lake	2011505	Mixed Use	0.13	85%	0.11	98	15%	0.02	69	94
Gem Lake	2011505	Open Water								
Gem Lake	2011505	Park and Recreation	0.21	12%	0.03	98	88%	0.19	55	60
Gem Lake	2011505	Single Family Residential	89.32	34%	30.37	98	66%	58.95	64	76
Gem Lake	2011505	Undeveloped	147.09	0%	0.00	98	100%	147.09	55	55
		Total	295.68		66.43			229.25		
					22.47%			77.53%		

Table B.21: Gem Lake Area of Landuse Category by MS4 (acres)

				Ramsey	White Bear Lake City
Landuse Category	TOTAL AREA (AC)	Gem Lake City MS4	MNDOT	County	MS4
Agricultural	12.44	11.81		0.63	
Commercial	35.70	29.50		3.59	2.62
Major Highway	10.78	5.33	5.45		
Mixed Use	0.13			0.13	
Open Water	10.66	10.66			
Park and Recreation	0.21	0.21			
Single Family Residential	89.32	81.73		2.02	5.58
Undeveloped	147.09	145.20		0.85	1.05
TOTAL	306.35	284.43	5.45	7.22	9.24
		93%	2%	2%	3%

Table B. 22: CATEGORICAL CNs by Landuse for Gem Lake Subwatershed

Landuse Category	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
Agricultural	63	63	63	63
Commercial	92	92	92	92
Major Highway	78	78	78	78
Mixed Use	94	94	94	94
Open Water				
Park and Recreation	60	60	60	60
Single Family Residential	76	76	76	76
Undeveloped	55	55	55	55

Table B.23: CATEGORICAL % Impervious by Landuse for Gem Lake Subwatershed

Landuse Category	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
Agricultural	5%	5%	5%	5%
Commercial	85%	85%	85%	85%
Major Highway	46%	46%	46%	46%
Mixed Use	85%	85%	85%	85%
Open Water				
Park and Recreation	12%	12%	12%	12%
Single Family Residential	34%	34%	34%	34%
Undeveloped	0%	0%	0%	0%
Overall % Impervious	20%	46%	54%	45%
Overall Impervious Area (ac)	57.76	2.51	3.88	4.12

Table B.24: Gem Lake P8 Input

rable B.24: Gem Lake P8 input						
	Total					
	Subwatershed		Landuse area			
Subwatershed	Area (ac)	Landuse Type:	(ac)	%Imperv	Impervious Area (ac)	Perv CN
GEM 2011505	327.94	Agricultural	12.44	5%	0.62	61
		Commercial	35.70	85%	30.35	61
		Major Highway	10.78	46%	4.96	61
		Mixed Use	0.13	85%	0.11	69
	32.20	5 <total open="" td="" water<=""><td></td><td></td><td></td><td></td></total>				
		Park and Recreation	0.21	12%	0.03	55
		Single Family Residential	89.32	34%	30.37	64
some new residential, w	ooded, wetlands	> Undeveloped	147.09	0%	0.00	55
		Total (minus open water)	295.68	22%	66.4	58.9

Directly connected

8%

Table B.25: SUMMARY DATA FOR EAST GOOSE LAKE SUBWATERSHED

			Ramsey	White Bear	
East Goose	Gem Lake City MS4	MNDOT	County	Lake City MS4	Overall
Resultant CN	92	88	75	75	75
Resultant Area (ac)	3.6	17.6	31.2	529.0	581.39
% Area	1%	3%	5%	91%	100%
Overall % Impervious	80%	66%	36%	36%	
Overall Impervious Area (ac)	2.86	11.54	11.35	191.37	217.12
S	0.92	1.36	3.37	3.40	
SRO (inches)	0.775	0.581	0.163	0.159	1.678
RO Volume (ac-ft)	0.232	0.852	0.423	7.010	8.517
% SRO= Proposed Partition of Existing					
Loads	2.72%	10.00%	4.97%	82.30%	100%

Where S=(1000/CN)-10

And Runoff Event P (inches)= 1.5

Table B.26: East Goose Lake Nutrient Sources by Category (lbs TP/ year)

						Modeled
						Average TP
				Precipitation &		Concentrat
	Watershed	Septics	Internal*	Groundwater	Total	ions (ug/L)
Average Year	215	0	1,777	29	2,021	258
W/ Load Reductions	88	0	71	29	188	60
% Reduction	59%	0%	96%	0%	91%	78%
(Source: Canfield Bachmann modeling)						

Table B.27: East Goose Lake Ove	rall CN calcs									
										Resultant CN- Categorical CN for
				Impervious	Imperviou	Impervous	Pervious	Pervious	Pervious	Goose Lake EAST Lake Sub by
Lake	Subwatershed ID	Landuse Type:	Area (ac)	Area (%)	s Area (ac)	CN	Area (%)	Area (ac)	CN	Landuse
Goose Lake EAST	2011504	Commercial	43.36	85%	36.86	98	15%	6.50	69	94
Goose Lake EAST	2011504	Institutional	46.65	30%	13.99	98	70%	32.65	61	72
Goose Lake EAST	2011504	Major Highway	18.77	66%	12.31	98	34%	6.46	69	88
Goose Lake EAST	2011504	Multi-Family Residential	49.10	65%	31.92	98	35%	17.19	61	85
Goose Lake EAST	2011504	Open Water								
Goose Lake EAST	2011504	Park and Recreation	11.46	12%	1.37	98	88%	10.08	61	65
Goose Lake EAST	2011504	Single Family Residential	402.20	30%	120.66	98	70%	281.54	61	72
Goose Lake EAST	2011504	Undeveloped	9.85	0%	0.00	98	100%	9.85	69	69
		total	581.39		217.12			364.27		
					37.34%			62.66%		

Table B.28: East Goose Area of Landuse Category by MS4 (acres)

Landuse Category	TOTAL	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
ŭ .	_	,	_	,	,
Commercial	43.36	3.16	0.00	4.07	36.13
Institutional	46.65	0.00	0.00	0.76	45.88
Major Highway	18.77	0.11	17.59	0.00	1.07
Multi-Family Residential	49.10	0.00	0.00	0.48	48.63
Open Water					
Park and Recreation	11.46	0.00	0.00	1.09	10.36
Single Family Residential	402.20	0.31	0.00	24.08	377.80
Undeveloped	9.85	0.00	0.00	0.74	9.10
TOTAL	581.39	3.59	17.59	31.23	528.98
%		0.62%	3.03%	5.37%	90.99%

Table B.29: CATEGORICAL CNs by Landuse for East Goose Lake Subwatershed

1 4 5 1 5 1 5 1 1 2 5 5 1 1 2 5 1 1 5 5 7 2 4 1 4 4 5 5 1	or East Goode Lane G	abtraceronea		
Landuse Category	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
Commercial	94	94	94	94
Institutional	72	72	72	72
Major Highway	88	88	88	88
Multi-Family Residential	85	85	85	85
Open Water				
Park and Recreation	65	65	65	65
Single Family Residential	72	72	72	72
Undeveloped	69	69	69	69
Resultant	92	88	75	75

Based on soil types and watershed % impervious area

Table B.30: CATEGORICAL % Impervious by Landuse for East Goose Lake Subwatershed

			Ramsey	White Bear
Landuse Category	Gem Lake City MS4	MNDOT	County	Lake City MS4
Commercial	85%	85%	85%	85%
Institutional	30%	30%	30%	30%
Major Highway	66%	66%	66%	66%
Multi-Family Residential	65%	65%	65%	65%
Open Water				
Park and Recreation	12%	12%	12%	12%
Single Family Residential	30%	30%	30%	30%
Undeveloped	0%	0%	0%	0%
Overall % Impervious	80%	66%	36%	36%
Overall Impervious Area (ac)	2.86	11.54	11.35	191.37

Table B.31: East Goose Lake P8 Input

Subwatershed	Area (ac)	Landuse Type:	<u>Landuse</u> area (ac)	%Imperv	Perv CN
East GOOSE 2011504	693.90	Commercial	43.36	85	69
		Institutional	46.65	30	61
		Major Highway	18.77	98	69
		Multi-Family Residential	49.10	65	61
e. GOOSE water	112.5	Open Water			
		Park and Recreation	11.46	12	61
		Single Family Residential	402.20	30	61
		Undeveloped	9.85	0	69
		<u>Tc</u>	otal 581.39	38.4	62.0
			Indirect	19.2	one half
			Direct	19.2	one half

Table B.32: SUMMARY DATA FOR WEST GOOSE LAKE SUBWATERSHED

14510 51021 6611111111111 5711711 6111		2 11, 11 21 31 12 2			
West Goose	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4	Overall
Resultant CN	68	88	78	82	74
Resultant Area (ac)	143.4	17.7	18.3	59.4	238.77
% Area	60%	7%	8%	25%	100%
Overall % Impervious	15%	66%	43%	50%	
Overall Impervious Area (ac)	21.83	11.62	7.84	29.82	71.11
S	4.80	1.36	2.74	2.18	
SRO (inches)	0.054	0.581	0.245	0.348	1.229
RO Volume (ac-ft)	0.650	0.858	0.373	1.724	3.605
% SRO= Proposed Partition of					
Existing Loads	18.03%	23.81%	10.34%	47.82%	100%

9 Where S=(1000/CN)-10

And Runoff Event P (inches)= 1.5

Table B.33: West Goose Lake Nutrient Sources by Category (lbs TP/ year)

				Internal		TP	
				(includes	Precipitation &		Concentration
	Watershed	M-Foods Dairy, LLC.	Septics	motorboating)	Groundwater	Total	(ug/L)
Average Year	110	25	0	397	6	727	164
W/ Reductions	27	25	0	123	6	225	60
% Reduction	76%	0%	0%	69%	0%	69%	64%
(Source: Canfield Bachmann modelin	ng)						

Table B.34: West Goose Lake Overall CN Calcs

										Resultant CN- Categorical CN for
				Impervious	Impervious	Impervou	Pervious Area	Pervious	Pervious	Goose Lake WEST
Lake	Subwatershed ID	Landuse Type:	Area (ac)	Area (%)	Area (ac)	s CN	(%)	Area (ac)	CN	Sub by Landuse
Goose Lake WEST	20115044	Commercial	18.66	85%	15.86	98	15%	2.80	69	94
Goose Lake WEST	20115044	Industrial	15.45	80%	12.36	98	20%	3.09	61	91
Goose Lake WEST	20115044	Major Highway	17.94	66%	11.77	98	34%	6.17	69	88
Goose Lake WEST	20115044	Multi-Family Residential	6.82	65%	4.43	98	35%	2.39	61	85
Goose Lake WEST	20115044	Open Water	3.86							
Goose Lake WEST	20115044	Park and Recreation	36.54	12%	4.39	98	88%	32.16	61	65
Goose Lake WEST	20115044	Single Family Residential	74.33	30%	22.30	98	70%	52.03	61	72
Goose Lake WEST	20115044	Undeveloped	65.17	0%	0.00	98	100%	65.17	69	69
		total	238.77		71.11			163.81		
					29.78%			68.60%		

Table B.35: West Goose Lake Area of Landuse Category by MS4 (acres)

				Ramsey	White Bear
Landuse Category	TOTAL	Gem Lake City MS4	MNDOT	County	Lake City MS4
Commercial	18.66			2.56	16.11
Industrial	15.45	0.00		2.79	12.66
Major Highway	17.95	0.00	17.72	0.21	0.01
Multi-Family Residential	6.82	0.82		1.25	4.74
Open Water	3.86	3.86			
Park and Recreation	36.54	36.53		0.01	
Single Family Residential	74.33	56.35		8.28	9.69
Undeveloped	65.17	45.85		3.16	16.16
TOTAL	238.77	143.42	17.72	18.25	59.38

Table B.36: CATEGORICAL CNs by Landuse for West Goose Lake Subwatershed

Landuse Category	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
Commercial	94	94	94	94
Industrial	91	91	91	91
Major Highway	88	88	88	88
Multi-Family Residential	85	85	85	85
Open Water				
Park and Recreation	65	65	65	65
Single Family Residential	72	72	72	72
Undeveloped	69	69	69	69
	68	88	78	82

Table B.37: CATEGORICAL % Impervious by Landuse for West Goose Lake Subwatershed

Landuse Category	Gem Lake City MS4	MNDOT	Ramsey County	White Bear Lake City MS4
Commercial	85%	85%	85%	85%
Industrial	80%	80%	80%	80%
Major Highway	66%	66%	66%	66%
Multi-Family Residential	65%	65%	65%	65%
Open Water				
Park and Recreation	12%	12%	12%	12%
Single Family Residential	30%	30%	30%	30%
Undeveloped	0%	0%	0%	0%
Overall % Impervious	15%	66%	43%	50%
Overall Impervious Area (ac)	21.83	11.62	7.84	29.82

Table B.38: West Goose Lake P8 Input

·			<u>Landuse</u>		
<u>Subwatershed</u>	<u>Area (ac)</u>	Landuse Type:	area (ac)	%Imperv	Perv CN
West GOOSE 20115044	262.90	Commercial	18.66	85	69
"little Goose"		Industrial	15.45	80	69
		Major Highway	17.94	98	69
		Multi-Family Residential	6.82	65	61
w. GOOSE water	28	Open Water			
		Park and Recreation	36.54	12	61
		Single Family Residential	74.33	30	61
		Undeveloped	65.17	0	69
		<u>Tota</u>	<u>l</u> 234.91	32.7	65.0
			Indirect	10.91	One third
			Direct	21.83	two thirds

^{*} East Goose is also tributary to West Goose. See Tab in this file for P8 calcs

Table B.39: SUMMARY DATA FOR GILFILLAN LAKE SUBWATERSHED

	North Oaks City		Ramsey	White Bear	
	MS4	Vadnais Heights City MS4	County	Township MS4	Overall
Resultant CN	69	61	67	65	68
Area by MS4 (ac)	368.2	43.2	19.2	100.7	531.36
% Area	69%	8%	4%	19%	100%
Overall % Impervious	26%	20%	28%	28%	
Overall Impervious Area (ac)	96.34	8.84	5.44	27.74	138.35
S	4.39	6.45	4.84	5.36	
SRO (inches)	0.077	0.0067	0.0526	0.0317	0.168
RO Volume (ac-ft)	2.368	0.024	0.084	0.266	2.743
% SRO= Proposed Partition of					
Existing Loads	86.35%	0.88%	3.07%	9.70%	100%

Where S=(1000/CN)-10

And Runoff Event P (inches)= 1.5

Table B.40: Gilfillan Lake Nutrient Sources by Category (lbs TP/ year)

		Atmospheric+					
	Watershed Load	Septics	Internal	Groundwater	Augmentation	Total	(ug/L)
Existing	17	24	364	24	0	429	148
TMDL*	17	0	124	24	1	166	60
% Reduction	0%	100%	66%	0%		61%	59%

^{*} Includes augmentation of clean water from Pleasant Lake

(Source: Canfield Bachmann modeling)

Table B.41: Gilfillan Lake Overall CN calcs											
			Anna (a.s.)	Impervious Area	Impervious	Inches of the Control	Pervious Area	Pervious	Pervious	Resultant CN- Categorical CN for Gilfillan Lake Sub	
	Subwatershed ID	Landuse Type:	Area (ac)	(%)	Area (ac)	Impervous CN	(%)	Area (ac)	CN	by Landuse	
Lake Gilfillan	2007902	Commercial	14.59	85%	12.40	98	15%	2.19	69	94	
Lake Gilfillan	2007902	Industrial	0.05	80%	0.04	98	20%	0.01	69	92	
Lake Gilfillan	2007902	Institutional	7.68	30%	2.30	98	70%	5.37	61	72	
Lake Gilfillan	2007902	Multi-Family Residential	53.39	37%	19.75	98	63%	33.64	61	75	
Lake Gilfillan	2007902	Open Water	19.35		0.00			0.00			
Lake Gilfillan	2007902	Park and Recreation	58.47	10%	5.85	98	90%	52.63	61	65	
Lake Gilfillan	2007902	Single Family Residential	326.69	30%	98.01	98	70%	228.68	61	72	
Lake Gilfillan	2007902	Undeveloped	51.14	0%	0.00	98	100%	51.14	55	55	
		total	531.36		138.35 26.04%			373.65 70.32%			

Table B.42: Gilfillan Lake Area of Landuse Category by MS4 (acres)

			Vadnais		White Bear
			Heights		Township
Landuse Category	Area (ac)	North Oaks City MS4	City MS4	Ramsey County	MS4
Commercial	14.59		3.62	2.10	8.87
Industrial	0.05		0.05		
Institutional	7.68			1.23	6.44
Multi-Family Residential	53.39	9.16		0.18	44.05
Open Water	19.35	5.49	3.93	0.96	8.97
Park and Recreation	58.47	43.35		0.41	14.71
Single Family Residential	326.69	295.37	19.08	10.61	1.64
Undeveloped	51.14	14.83	16.56	3.73	16.02
TOTAL	531.36	368.2	43.2	19.2	100.7
	% Area>	69%	8%	4%	19%

Table B.43: CATEGORICAL CNs by Landuse for Gilfillan Lake Subwatershed

	North Oaks City		Ramsey	White Bear
CN	MS4	Vadnais Heights City MS4	County	Township MS4
Commercial	94	94	94	94
Industrial	92	92	92	92
Institutional	72	72	72	72
Multi-Family Residential	75	75	75	75
Open Water				
Park and Recreation	65	65	65	65
Single Family Residential	72	72	72	72
Undeveloped	55	55	55	55
Overall CN	69	61	67	65

Table B.44: CATEGORICAL % Impervious by Landuse for Gilfillan Lake Subwatershed

	North Oaks City		Ramsey	White Bear
CN	MS4	Vadnais Heights City MS4	County	Township MS4
Commercial	85%	85%	85%	85%
Industrial	80%	80%	80%	80%
Institutional	30%	30%	30%	30%
Multi-Family Residential	37%	37%	37%	37%
Open Water				
Park and Recreation	10%	10%	10%	10%
Single Family Residential	30%	30%	30%	30%
Undeveloped	0%	0%	0%	0%
Overall % Impervious	26%	20%	28%	28%
Overall Impervious Area (ac)	96.34	8.84	5.44	27.74

Table B.45: Gilfillan Lake P8 Input

Colombanhad	A ()		<u>Landuse</u>	0/1	D CN
<u>Subwatershed</u>	<u>Area (ac)</u>	<u>Landuse Type:</u>	<u>area (ac)</u>	<u>%Imperv</u>	Perv CN
Gilfillan 2007902	531.36	Commercial	14.59	85	69
		Industrial	0.05	80	69
		Institutional	7.68	30	61
		Multi-Family Residential	53.39	37	61
Gilfillan	19.35	Open Water (orig 118.55)			
All impervious indirectly connected	d	Park and Recreation	58.47	10	61
		Single Family Residential	326.69	30	61
		Undeveloped	51.14	0	55
		<u>Total</u>	512.01	27.0	60.6

Table B.46: SUMMARY DATA FOR Wilkinson Lake Subwatershed

Table 6.40. SOMMANT DATA FOR WI	Individual Editor	I as water sine a	T		1		liver is a	
							White Bear	
	Anoka			North Oaks		White Bear	Township	
Wilkinson	County	Lino Lakes City MS4	MNDOT	City MS4	Ramsey County	Lake City MS4	MS4	Overall
Resultant CN	60	60	83	62	64	73	66	64
Resultant Area (ac)	10.3	251.0	72.8	1338.5	52.9	154.7	1092.6	2972.8
% Area	0.3%	8.4%	2.4%	45.0%	1.8%	5.2%	36.8%	100.0%
Overall % Impervious	8%	5%	47%	11%	14%	35%	20%	0%
Overall Impervious Area (ac)	0.79	11.56	34.42	141.50	7.27	54.41	214.28	0.00
S	6.59	6.80	2.05	6.14	5.74	3.67	5.23	5.57
SRO (inches)	0.005	0.003	0.379	0.012	0.020	0.132	0.036	0.587
RO Volume (ac-ft)	0.004	0.059	2.297	1.288	0.090	1.708	3.290	8.738
% SRO= Proposed Partition of								
Existing Loads	0.05%	0.68%	26.29%	14.74%	1.03%	19.55%	37.66%	

Where S=(1000/CN)-10

And Runoff Event P (inches)=

1.5

Table B.47: Wilkinson Lake Nutrient Sources by Category (lbs TP/ year)

	Watershed	,, , , ,		Atmospheric+		Concentration	
TMDL	Load	Septics	Internal	Groundwater	Upstream Lakes	(ug/L)	Total
Existing	740	0	52	25	50	139	867
TMDL	196	0	52	25	50	60	322
% Reduction	74%	0%	0%	0%	0%	57%	63%
(Source: Canfield Bachmann model	ing)						

Table B.48: Wilkinson Lake Overall (CN calcs									
					Impervious Area		Pervious	Pervious Area	Pervious	Resultant CN- Categorical CN for Wilkenson Sub by
Lake	Subwatershe	Landuse Type:	Area (ac)	Area (%)	(ac)	Impervous CN	Area (%)	(ac)	CN	Landuse
Lake Wilkinson	2007904	Agricultural	157.40	5%	7.87	98	95%	149.53	61	63
Lake Wilkinson	2007904	Commercial	29.85	85%	25.37	98	15%	4.48	69	94
Lake Wilkinson	2007904	Industrial	124.71	80%	99.77	98	20%	24.94	69	92
Lake Wilkinson	2007904	Institutional	32.57	20%	6.51	98	80%	26.05	61	68
Lake Wilkinson	2007904	Major Highway	74.40	47%	35.19	98	53%	39.21	69	83
Lake Wilkinson	2007904	Mixed Use	29.86	85%	25.38	98	15%	4.48	69	94
Lake Wilkinson	2007904	Multi-Family Residential	74.41	37%	27.53	98	63%	46.88	61	75
Lake Wilkinson	2007904	Open Water	49.03							
Lake Wilkinson	2007904	Park and Recreation	896.26	5%	44.81	98	95%	851.45	61	63
Lake Wilkinson	2007904	Single Family Residential	639.32	30%	191.80	98	70%	447.53	61	72
Lake Wilkinson	2007904	Undeveloped	865.01	0%	0.00	98	100%	865.01	55	55
		total	2972.84		464.24			2459.56		
					15.62%			82.73%		

Table B.49: Wilkinson Lake Area of Landuse Category by MS4 (acres)

							White Bear	White Bear
					North Oaks City	Ramsey	Lake City	Township
Landuse Category	TOTAL	Anoka County	Lino Lakes City MS4	MNDOT	MS4	County	MS4	MS4
Agricultural	157.40	1.96	95.66		17.89	0.75		41.14
Commercial	29.85	0.02	0.05		1.84	0.72	11.15	16.07
Industrial	124.71					2.16	5.66	116.90
Institutional	32.57				5.78	1.29		25.50
Major Highway	74.40			72.78			0.01	1.61
Mixed Use	29.86					0.29	28.56	1.01
Multi-Family Residential	74.41				9.48	1.48	19.94	43.50
Open Water	49.03				23.65			25.38
Park and Recreation	896.26		0.03		496.31	12.25	34.70	352.97
Single Family Residential	639.32	2.24	22.45		365.21	10.76	23.39	215.28
Undeveloped	865.01	6.11	132.83		418.31	23.22	31.30	253.24
TOTAL	2972.84	10.34	251.03	72.78	1338.46	52.92	154.71	1092.60

Table B.50: CATEGORICAL CNs by Landuse for Wilkenson Lake Subwatershed

							White Bear
	Anoka			North Oaks		White Bear	Township
Landuse Category	County	Lino Lakes City MS4	MNDOT	City MS4	Ramsey County	Lake City MS4	MS4
Agricultural	63	63	63	63	63	63	63
Commercial	94	94	94	94	94	94	94
Industrial	92	92	92	92	92	92	92
Institutional	68	68	68	68	68	68	68
Major Highway	83	83	83	83	83	83	83
Mixed Use	94	94	94	94	94	94	94
Multi-Family Residential	75	75	75	75	75	75	75
Open Water							
Park and Recreation	63	63	63	63	63	63	63
Single Family Residential	72	72	72	72	72	72	72
Undeveloped	55	55	55	55	55	55	55
	60	60	83	62	64	73	66

Table B.51: CATEGORICAL % Impervious by Landuse for Wilkinson Lake Subwatershed

							White Bear
	Anoka			North Oaks		White Bear	Township
Landuse Category	County	Lino Lakes City MS4	MNDOT	City MS4	Ramsey County	Lake City MS4	MS4
Agricultural	5%	5%	5%	5%	5%	5%	5%
Commercial	85%	85%	85%	85%	85%	85%	85%
Industrial	80%	80%	80%	80%	80%	80%	80%
Institutional	20%	20%	20%	20%	20%	20%	20%
Major Highway	47%	47%	47%	47%	47%	47%	47%
Mixed Use	85%	85%	85%	85%	85%	85%	85%
Multi-Family Residential	37%	37%	37%	37%	37%	37%	37%
Open Water							
Park and Recreation	5%	5%	5%	5%	5%	5%	5%
Single Family Residential	30%	30%	30%	30%	30%	30%	30%
Undeveloped	0%	0%	0%	0%	0%	0%	0%
Overall % Impervious	8%	5%	47%	11%	14%	35%	20%
Overall Impervious Area (ac)	0.79	11.56	34.42	141.50	7.27	54.41	214.28

Table B.52: Wilkinson Lake P8 Input

Subwatershed	Area (ac)	Landuse Type:	Landuse area (ac)	%Imperv	Perv CN	
Wilkinson 2007904	3069.94	Agricultural	157.40	5	61	
		Commercial	29.85	85	69	
		Industrial	124.71	80	69	
		Institutional	32.57	20	61	
		Major Highway	74.40	98	69	
		Mixed Use	29.86	85	69	
		Multi-Family Residential	74.41	37	61	
Wilkinson	97.1	Open Water	49.03			
		Park and Recreation	896.26	5	61	
	3069.94	Single Family Residential	639.32	30	61	
		Undeveloped	865.01	0	55	
		<u>To:</u>	<u>tal</u> 2972.84	16.9	58.9	
			Direct	8.44		
			Indirect	8.44		split 50/50

Table B.53: SUMMARY DATA FOR Lambert Creek Subwatershed

				Vadnais	White Bear	White Bear	
	Gem Lake City		Ramsey	Heights City	Lake City	Township	
Lambert Creek	MS4	MNDOT	County	MS4	MS4	MS4	Overall
Resultant CN	73	8	6 76	74	75	64	73
Resultant Area (ac)	174.4	79.	2 101.3	1914.4	794.1	594.5	3658.0
% Area	4.8%	2.29	6 2.8%	52.3%	21.7%	16.3%	100.0%
Overall % Impervious	0%	09	6 0%	0%	0%	0%	0%
Overall Impervious Area (ac)	0.16	0.5	9 0.30	0.22	0.33	0.21	0.00
S	3.68	1.6	2 3.17	3.45	3.41	5.56	3.70
SRO (inches)	0.131	0.49	0.185	0.154	0.158	0.025	1.147
SRO (ac-ft)	22.85	39.1	7 18.77	293.99	125.32	15.02	515.11
SRO %	4.44%	7.609	6 3.64%	57.07%	24.33%	2.92%	100.00%

Where S=(1000/CN)-10

And Runoff Event P (inches)=

1.5

Table B.54: Lambert Creek Ove	rall CN calcs									
Waterbody	Subwatershed ID	Landuse Type:	Area (ac)	Impervious Area (%)	Impervious Area (ac)	Impervous CN	Pervious Area (%)	Pervious Area (ac)	Pervious CN	Resultant CN- Categorical CN for Lambert Creek Sub by Landuse
Lambert Creek	20115055	Agricultural	26.87	12%	3.22	98	88%	23.65	61	65
Lambert Creek	20115055	Commercial	122.25	85%	103.91	98	15%	18.34	69	94
Lambert Creek	20115055	Industrial	146.22	80%	116.98	98	20%	29.24	69	92
Lambert Creek	20115055	Institutional	103.49	30%	31.05	98	70%	72.44	61	72
Lambert Creek	20115055	Major Highway	97.15	59%	57.13	98	41%	40.03	69	86
Lambert Creek	20115055	Mixed Use	11.86	34%	4.03	98	66%	7.83	64	76
Lambert Creek	20115055	Multi-Family Residential	248.99	37%	92.13	98	63%	156.86	61	75
Lambert Creek	20115055	Open Water	92.14	0%	0.00	98	100%	92.14		0
Lambert Creek	20115055	Park and Recreation	263.86	12%	31.66	98	88%	232.20	55	60
Lambert Creek	20115055	Single Family Residential	1602.03	30%	480.61	98	70%	1121.42	61	72
Lambert Creek	20115055	Undeveloped	943.07	0%	0.00	98	100%	943.07	78	78
		total	3657.95		920.72			2737.23		
					25.17%			74.83%		

Table B.55: Lambert Creek Area of Landuse Category by MS4 (acres)

					Vadnais	White Bear	White Bear
				Ramsey	Heights City	Lake City	Township
Landuse Category	TOTAL	Gem Lake City MS4	MNDOT	County	MS4	MS4	MS4
Agricultural	26.87			2.94	23.93		
Commercial	122.25			8.26	77.63	35.39	0.98
Industrial	146.22			3.56	35.43	56.85	50.38
Institutional	103.49	1.72		4.81	16.07	78.04	2.85
Major Highway	97.15		79.24	7.17	3.91	6.83	
Mixed Use	11.86			0.12	7.45	0.42	3.87
Multi-Family Residential	248.99			4.57	131.35	41.16	71.92
Open Water	92.14				1.32	0.38	90.44
Park and Recreation	263.86	18.96		7.58	168.00	40.48	28.84
Single Family Residential	1602.03	86.30		39.66	819.44	475.94	180.69
Undeveloped	943.07	67.39		22.66	629.85	58.62	164.55
TOTAL	3657.95	174.38	79.24	101.33	1914.37	794.12	594.52

Table B.56: CATEGORICAL CNs by Landuse for Lambert Creek Subwatershed

				Vadnais	White Bear	White Bear
	Gem Lake City		Ramsey	Heights City	Lake City	Township
Landuse Category	MS4	MNDOT	County	MS4	MS4	MS4
Agricultural	65	65	65	65	65	65
Commercial	94	94	94	94	94	94
Industrial	92	92	92	92	92	92
Institutional	72	72	72	72	72	72
Major Highway	86	86	86	86	86	86
Mixed Use	76	76	76	76	76	76
Multi-Family Residential	75	75	75	75	75	75
Open Water	0	0	0	0	0	0
Park and Recreation	60	60	60	60	60	60
Single Family Residential	72	72	72	72	72	72
Undeveloped	78	78	78	78	78	78
Composite CN	73	86	76	74	75	64

Table B.57: CATEGORICAL % Impervious by Landuse for Lambert Creek Subwatershed

				Vadnais	White Bear	White Bear
	Gem Lake City		Ramsey	Heights City	Lake City	Township
Landuse Category	MS4	MNDOT	County	MS4	MS4	MS4
Agricultural	12%	12%	12%	12%	12%	12%
Commercial	85%	85%	85%	85%	85%	85%
Industrial	80%	80%	80%	80%	80%	80%
Institutional	30%	30%	30%	30%	30%	30%
Major Highway	59%	59%	59%	59%	59%	59%
Mixed Use	34%	34%	34%	34%	34%	34%
Multi-Family Residential	37%	37%	37%	37%	37%	37%
Open Water	0%	0%	0%	0%	0%	0%
Park and Recreation	12%	12%	12%	12%	12%	12%
Single Family Residential	30%	30%	30%	30%	30%	30%
Undeveloped	0%	0%	0%	0%	0%	0%
Overall % Impervious	16%	59%	30%	22%	33%	21%
Overall Impervious Area (ac)	28.68	46.59	30.42	421.44	266.01	127.58

Notes (Appendix B Tables):

Tables exclude lake surface area

Runoff from other open water was assumed to be approximatly equal to evaporation for P8 and for CN calcs.

Appendix C

Watershed Model Results (P8)

- Table C.1: Gem Lake P8 Watershed Modeling Results
- Table C.2: East Goose Lake P8 Watershed Modeling Results
- Table C.3: West Goose Lake P8 Watershed Modeling Results
- Table C.4: Gilfillan Lake P8 Watershed Modeling Results
- Table C.5: Wilkinson Lake (2007904) P8 Watershed Modeling Results
- Table C.6: Wilkinson Lake (2007903) P8 Watershed Modeling Results
- Table C.7: Wilkinson Lake (2007901) P8 Watershed Modeling Results

Table C.1: Gem Lake

306.34 acres

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2000	2.1	54	67	339	0.218
2001	3.4	87	90	311	0.294
2002	4.9	125	117	310	0.383
2003	2.1	54	66	328	0.217
2004	4.4	112	89	247	0.291
2005	4.3	110	103	285	0.336
2007	2.9	74	79	319	0.256
2008	2.3	59	68	325	0.221
2009	2.2	56	71	349	0.231
Average	3.2	81	83	312	0.272

Stdev 31 Average - Stdev= 282

Note (Table C.1): For the Gem Lake Canfield Bachmann modeling, the low end of the Stdev range for the average annual concentration was used to calibrate the model (282 ug/L). This concentration equates to a load of 62.1 lbs/yr or 0.203 lbs/acre/yr.

Table C.2: East Goose Lake

577.55 acres

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2007	4.4	213	171	295	0.297
2008	3.8	184	148	294	0.255
2009	3.8	184	157	314	0.273
2010*	10.1	489	380	285	0.658
Average	5.5	268	214	297	0.371

^{*} Through 8/31/2010

Table C.3: West Goose Lake

238.78 acres

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2007	6.4	127	109	319	0.456
2008	5.5	109	95	220	0.396
2009	5.6	111	100	333	0.417
2010*	10.6	211	163	289	0.683
Average	7.0	140	117	290	0.488

^{*} Through 8/31/2010

Table C.4: Gilfillan Lake

531.35 acres

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2006	0.9	40	13	120	0.024
2007	1.1	49	17	129	0.031
2008	0.7	31	10	119	0.018
2009	0.7	31	11	133	0.020
2010	2.37	105	30	111	0.057
Average	1.2	51	16	122	0.030

Table C.5: Wilkinson Lake (2007904)

2972.82 acres

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2001	5.7	1423	1231	318	0.41
2002	5.1	1271	1075	311	0.36
2003	1.8	452	457	372	0.15
2004	4.6	1131	688	224	0.23
2005	4.2	1032	761	271	0.26
2007	2.9	729	571	288	0.19
2008	2.3	566	475	309	0.16
2009	2.0	502	492	360	0.17
Average	3.6	888	719	306	0.24

Table C.6: Wilkinson Lake (2007901)

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Birch Lake Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2001	9.9	427	56	48	0.087
2002	11.5	497	41	30	0.063
2003	5.7	246	15	23	0.024
2004	12.3	532	49	34	0.077
2005	11.8	507	28	20	0.043
2007	7.6	330	38	42	0.059
2008	6.7	289	26	33	0.041
2009	6.3	273	22	30	0.035
Average	9.0	388	34	33	0.053

Note (Table C.6): P8 modeling for the Birch Lake sub-watershed (517.89 acres excluding open water) was performed to determine annual runoff rates. Runoff volumes were applied to the measured in lake concentrations for lake response modeling to determine the annual TP load to Wilkinson Lake in lbs. This calculated annual load is presented in the table above. The areal export rate reported was calculated using the entire sub-watershed area of 640.83 acres.

Table C.7: Wilkinson Lake (2007903)

Year	Annual Runoff (in)	Annual Runoff Volume (ac-ft)	Annual TP Load (lbs)	Amelia Lake Average Annual Concentration (ug/L)	Areal Export Rate (lbs/acre/yr)
2001	3.7	165	13	29	0.019
2002	5.1	225	21	34	0.030
2003	1.6	70	5	24	0.007
2004	5.1	226	14	23	0.020
2005	4.5	200	10	18	0.014
2007	2.6	115	30	95	0.043
2008	2.1	92	7	26	0.009
2009	2.0	88	15	61	0.021
Average	3.3	148	16	39	0.022

Note (Table C.7): P8 modeling for the Amelia Lake sub-watershed (533.47 acres excluding open water) was performed to determine annual runoff rates. Runoff volumes were applied to the measured in lake concentrations for lake response modeling to determine the annual TP load to Wilkinson Lake in lbs. This calculated annual load is presented in the table above. The areal export rate reported was calculated using the entire sub-watershed area of 691.33 acres.

Notes (Tables C.1-C.7):

P8 model inputs for each modeled lake shed excluded all areas with an open water land use designation. The P8 model outputs for annual runoff volume and TP concentration were applied to the lake shed area excluding only the actual lake area for lake response modeling. Due to the slight difference in these lake shed areas, aerial export rates shown in Tables C.1-C.7 may vary slightly from those reported in Table B.11 (which were calculated from the lake response modeling results).

Appendix D

Subwatershed Air Photos, Landuse, and MS4 Maps for Each Impaired Water Body

VADNAIS LAKE AREA WMO

Gem Lake Watershed

Wenck

1800 Pioneer Creek Center Maple Plain, MN 55359-0429 1-800-472-2232 JAN 2012

Figure 1

VADNAIS LAKE AREA WMO

Goose Lake Watershed

Wenck

1800 Pioneer Creek Center Maple Plain, MN 55359-0429 1-800-472-2232 JAN 2012

Figure 1

D-5

VADNAIS LAKE AREA WMO

Gem Lake Watershed and MS4 Boundary Map

Wenck

1800 Pioneer Creek Center Maple Plain, MN 55359-0429 1-800-472-2232

MAR 2012

Figure 1

D-7

D-13

Appendix E

VLAWMO Informal Plant Surveys for Impaired Lakes Map Results

Appendix F

May 3, 2012 TMDL Open House & Workshop Summary of Public Comment

Results of electronic, end-of-workshop assessment and stakeholder input.

Participants responded to a series of 11 multiple choice questions using the instantaneous Turning Point electronic assessment system. Some summary statements are below:

- 42% of the participants indicated the TMDL has large implications to their city or organization. 21% said a little. 11% no impacts. 26% did not know yet.
- 61% of the participants only slightly better understood the bacteria reductions needed. 22% indicated they understood them much better.
- 33% of the participants indicated that their city or organization could do a lot to implement new practices and policies to achieve the reductions. 39% indicated they thought their city or organization could do a little. No one said they could not do anything, however, 11% did not know yet what they could do.
- 76% indicated a good to very good understanding of the sources of the pollutants to the five lakes and Lambert Creek.
- Participants highly varied in their understanding of how the recommended reductions were determined and assigned. 42% said good/very good understanding, 37% said average/fair, 21% said poor, 0% said very poor
- 50% agreed strongly with the target reductions, 22% somewhat agreed, 11% strongly disagreed, and 17% indicated they did not know their level of agreement quite yet.